Das Phänomen der sechsgeteilten Spirale

Rund um den Erdball findet man bei vielen Urvölkern den Symbolismus einer Spirale, die offensichtlich bereits in frühester Zeit eine besondere Bedeutung und Anziehungskraft besaß. Heute wissen wir, dass Wirbel, also spiralförmig fortlaufende Bewegungen, in der Natur überhaupt nicht wegzudenken sind. Besonders auffallend sind Wirbelstürme, die eine ungeheure Kraft entfalten können, bis hin zu spiralförmigen Galaxien wie die Milchstraße. Selbst auf dem Mars wurde durch die NASA eine spiralförmige Wolkenbildung fotografiert.

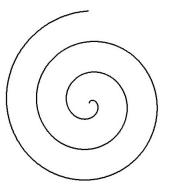
Im einfachsten Fall sind Spiralen bei Urvölkern auf Felszeichnungen oder Feldsteinen verewigt, wobei für uns heute unbekannt ist, aus welchem Grund sich die damaligen Menschen mit diesem Symbol verbunden fühlten.

Abbildung 1:prähistorische Spiralen aus New Grange in England

Der Überlieferung nach wurde die Spirale erstmals von Archimedes untersucht, folglich ist sie als archimedische Spirale bekannt.

Abbildung 2: die archimedische Spirale

Diese Form einer Spirale stellt die einfachste Form einer Spirale dar, denn sie entsteht, wenn bei einer Drehbewegung der Radius proportional zum Drehwinkel wächst. Als Formel kann man diesen Zusammenhang wie folgt ausdrücken: $r = a \times \phi$, wobei a eine frei gewählte konstante Größe ist (a bestimmt den Abstand von Spiralsegment zu Spiralsegment) und ϕ als Variable den fortschreitenden Winkel angibt. Darüber hinaus haben

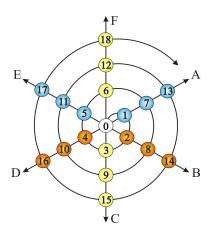


Mathematiker vielfältige Formen von Spiralen entwickelt, die in unterschiedlichen Wissenschaftsbereichen oder bei physikalischen Prozessen ihre Berechtigung haben.

Für den nachfolgend aufgeführten Fall spielt die mathematische Funktion der Spirale keine Rolle, so dass auf die einfachste Form zurückgegriffen werden soll. Zusätzlich werden durch den Zentralpunkt der Spirale drei Achsen symmetrisch eingezeichnet, wodurch eine sechsgeteilte Spirale entsteht. Beziffert man fortlaufend die Schnittpunkte der Spirale mit diesen drei Achsen beginnend mit "0" in der Mitte, ergibt sich folgendes Bild:

Abbildung 3: die sechsgeteilte Spirale

In dieser Grafik wurden mit bewusstem Hintergrund die Zahlen farblich hinterlegt, denn erst dadurch wird ein System erkannt, welches sonst nicht gleich auf Anhieb zu verstehen ist. Auf den beiden blau hinterlegten Achsabschnitten 0-A und 0-E, welche mit der Ziffer "1" bzw. "5" beginnen, befinden sich im weiteren Fortgang sämtliche Primzahlen und ihre Produkte, während auf den rot hinterlegten Achsabschnitten 0-B und 0-D, die mit der Ziffer "2" und "4" eingeleitet werden alle durch zwei teilbaren Zahlen, die nicht gleichzeitig durch drei teilbar sind, enthalten sind. Die mittlere gelb gekennzeichnete Achse enthält schließlich alle durch drei teilbaren Zahlen, deren erste Ziffer die "3" bildet. Auf diese Art und Weise können



drei Zahlenmengen abgeleitet werden. Über diese Einteilung schrieb bereits Dr. Peter Plichta in seinem Buch "das Primzahlkreuz"¹.

Aus einem anderen Blickwinkel betrachtet teilt die senkrechte Achse die beiden zuerst genannten Zahlenmengen in zwei Teile, die logischerweise zusammengehören. Nebenbei ist in diesem System noch ein Phänomen enthalten, welches erst bei Kenntnis der im arabischen Sprachraum praktizierten Schreibweise für die Ziffern zu erkennen ist. Die beiden Ziffern "7" und "8" befinden sich auf jenen Achsabschnitten, welche sich in den beiden ersten Zahlenmengen spiegelbildlich gegenüber stehen. Das Bemerkenswerte dabei ist, dass die damit verbundene geometrische Form genau der Schreibweise im arabischen Raum entspricht.

Abbildung 4: die Schreibweise der beiden Ziffern 7 und 8 im arabischen Raum

Aus diesem Fakt lässt sich die Frage ableiten, ob die Schreibweise dieser beiden Ziffern dem reinen Zufall entstammt oder ob möglicherweise die Entwicklung der natürlichen Zahlen in einer sechsgeteilten Spirale bereits bekannt war. Die Beantwortung dieser Frage wird wohl nicht zu klären sein.

Bemerkt wurde bereits, das sich aus Abbildung 3 auch die Zahlenmenge der Primzahlen und ihrer Produkte ableiten lässt. Nun ist bekannt, dass sich die Menschheit nachweislich seit mehr als 2000 Jahren mit der Verteilung der Primzahlen beschäftigt hat und nach einer verborgenen Ordnung der Primzahlen sucht.

Von dem griechischen Gelehrten Eratosthenes von Kyrene (~273 bis 194 v. Chr), der im Auftrag der ägyptischen Könige aus der Dynastie der Ptolomäer die Bibliothek von Alexandria leitete, ist ein mathematischer Algorithmus überliefert, der als "Sieb des Eratosthenes" bekannt wurde. Ziel dieses Verfahrens war es aus einer vorgegebenen Zahlenmenge jene Zahlen zu eliminieren, die keine Primzahlen sind. Auf diese Weise konnte er bestimmen, welche Zahlen eindeutig Primzahlen sind.

Üblicherweise wird nach dieser Methode eine Tabelle mit zehn Spalten erarbeitet (siehe Tabelle 1 hier mit einer beispielhaften Zahlenmenge bis zur Größe 110), in der zuerst alle durch 2 teilbare (gelb) und anschließend alle durch 5 teilbare Zahlen (hellblau) eliminiert werden, wodurch die Zahlen in den bunten Feldern gestrichen werden müssen. Übrig bleiben nur noch ungerade Zahlen in den Spalten 1,3 7, und 9.

Tabelle 1: Das Sieb des Eratosthenes I

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

In einem nächsten Schritt werden jene Zahlen gesucht, die durch 3 und 7 teilbar sind und die Felder gleichfalls farblich markiert. Da keine der verbliebenen Zahl durch eine höhere Primzahl geteilt werden kann, enthält die nun entstandene Tabelle lediglich Primzahlen, wobei die "1" gleichfalls als Primzahl definiert wird, da sie nur durch sich selbst teilbar ist

¹ Dr. Peter Plichta; "Das Primzahlkreuz", Seite ...

Tabelle 2: das Sieb des Eratosthenes II

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

Es ist offensichtlich, dass dieses Verfahren zwar zum Ziel führt, aber allein deswegen schon umständlich ist, weil von Anfang an mit **allen** natürlichen Zahlen gearbeitet werden muss. In der sechsgeteilten Spirale gibt es bedingt durch deren Konstruktion bereits auf natürlichem Wege eine Vorauswahl, so dass die Menge der zu prüfenden Zahlen sich auf ein Drittel

reduziert.

Drückt man auf mathematischen Wege in dieser Spirale aus, wo sich Primzahlen und ihre Produkte befinden, so können wir das formelmäßig wie folgt darstellen:

auf dem rechten Achsabschnitt 0-A
 i. 6×n+1 für 0 ≤ n ≤ ∞
 auf dem linken Achsabschnitt 0-E
 i. 6×n-1 für 1 ≤ n ≤ ∞

Es ist offensichtlich, dass sich in beiden Zahlenreihen zwangsweise Produkte von Primzahlen ergeben müssen, wie zum Beispiel $5 \times 5 = 25$ oder $5 \times 7 = 35$.

Die sich aus diesen Formen ergebenden Teilergebnisse lassen sich auf anderem Wege relativ leicht in einer sechsgeteilten Tabelle leicht extrahieren, wo sich ausschließlich in der ersten und fünften Spalte die Primzahlen und ihre Produkte wieder finden:

Tabelle 3: abgewandelte Form des Sieb des Eratosthenes

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36
37	38	39	40	41	42
43	44	45	46	47	48
49	50	51	52	53	54
55	56	57	58	59	60
61	62	63	64	65	66
67	68	69	70	71	72
73	74	75	76	77	78
79	80	81	82	83	84
85	86	87	88	89	90
91	92	93	94	95	96
97	98	99	100	101	102
103	104	105	106	107	108
109	110	111	112	113	114

Werden die beiden Spalten 1 und 5 miteinander "verschmolzen" (wie in Tabelle 4 gezeigt), ergibt sich die um 2/3 reduzierte Zahlenmenge als Ausgangspunkt für das Finden der Primzahlen, in der aus Gründen der Logik zur Entstehung der Tabelle die "1" nicht eliminiert wird.

Tabelle 4: die geordnete Menge aller Zahlen auf den Achsabschnitte 0-A und 0-E

5	7	11	13	17	19	23	25	29	31	35	37		745	749	751	
---	---	----	----	----	----	----	----	----	----	----	----	--	-----	-----	-----	--

Um die Produkte von Primzahlen aus der Gesamtmenge der Primzahlen und ihrer Produkte zu eliminieren, ist es folglich nur notwendig, die in Tabelle 4 gezeigte Folge mit Hilfe einer Kreuztabelle untereinander zu multiplizieren und sämtliche sich ergebenden Produkte aus der Gesamtmenge zu

entfernen. In dieser Kreuztabelle entwickeln sich zwangsweise beiderseitig der mittleren, schrägen Achse die Teilergebnisse spiegelbildlich.

Tabelle 4: Kreuztabelle aller Produkte von Primzahlen

	5	7	11	13	17	19	23	25	29	31	35	37		745	749	751	
5	25	35	55	65	85	95	115	125	145	155	175	185		3725	3745	3755	
7	35	49	77	91	119	133	161	175	203	217	245	259		5215	5243	5257	
11	55	77	121	143	187	209	253	275	319	341	385	407		8195	8239	8261	
13	65	91	143	169	221	247	299	325	377	403	455	481		9685	9737	9763	
17	85	119	187	221	289	323	391	425	493	527	595	629		12665	12733	12767	
19	95	133	209	247	323	361	437	475	551	589	665	703		14155	14231	14269	
23	115	161	253	299	391	437	529	575	667	713	805	851		17135	17227	17273	
25	125	175	275	325	425	475	575	625	725	775	875	925		18625	18725	18775	
29	145	203	319	377	493	551	667	725	841	899	1015	1073		21605	21721	21779	
31	155	217	341	403	527	589	713	775	899	961	1085	1147		23095	23219	23281	
35	175	245	385	455	595	665	805	875	1015	1085	1225	1295	:	26075	26215	26285	
37	185	259	407	481	629	703	851	925	1073	1147	1295	1369		27565	27713	27787	
745	3725	5215	8195	9685	12665	14155	17135	18625	21605	23095	26075	27565		555025	558005	559495	
749	3745	5243	8239	9737	12733	14231	17227	18725	21721	23219	26215	27713		558005	561001	562499	
751	3755	5257	8261	9763	12767	14269	17273	18775	21779	23281	26285	27787		559495	562499	564001	

Die Schlussfolgerung aus diesen bis hierhin vorgestellten Erkenntnissen lautet demzufolge:

Nicht die Verteilung der Primzahlen selbst ist das Entscheidende, um deren innere Ordnung zu erkennen, sondern die Eliminierung der Produkte von Primzahlen aus der oben genannten Gesamtmenge aller Primzahlen und ihrer Produkte, die aus Bild 3 abzuleiten sind!

Das heißt aber auch, dass die Primzahlen hinsichtlich ihrer Verteilung keiner Ordnung unterliegen können!

Diese hier vorgestellte Systematik lässt aber auch die Möglichkeit zu, festzustellen, ob eine x-beliebige Zahl eine Primzahl ist oder nicht. Das hierzu ein Computerprogramm erforderlich ist versteht sich von selbst.

Bei einem derartigen Programm muss eine vorgegebene Zahl X in zwei Durchläufen durch jene Werte dividiert werden, die sich aus den Formeln für 6×n-1 und 6×n+1 ergeben.

n	55	n	61
5	11	5	12,2
7	7,8571	7	8,7143
11	5	11	5,5455
13	4,2308	13	4,6923
17	3,2353	17	3,5882
19	2,8947	19	3,2105
23	2,3913	23	2,6522
25	2,2	25	2,44
29	1,8966	29	2,1034
31	1,7742	31	1,9677
35	1,5714	35	1,7429
37	1,4865	37	1,6486
41	1,3415	41	1,4878
43	1,2791	43	1,4186
47	1,1702	47	1,2979
49	1,1224	49	1,2449
53	1,0377	53	1,1509
55	1	55	1,1091
59	0,9322	59	1,0339
61	0,9016	61	1
65	0,8462	65	0,9385

Tabelle 5: Überprüfung, ob eine vorgegebene Zahl eine Primzahl ist

In der linken Tabelle sind in der ersten und vierten Spalte die Primzahlen und ihre Produkte aufgeführt, während in der ersten Zeile gelb hinterlegt die beiden zu prüfenden Zahlen (als Beispiele) 55 und 61 eingetragen sind. Zweite und letzte Spalte zeigen die Teilergebisse für den Quotienten aus erster Zeile geteilt durch die geordnete Zahlenfolge der Primzahlen und ihrer Produkte.

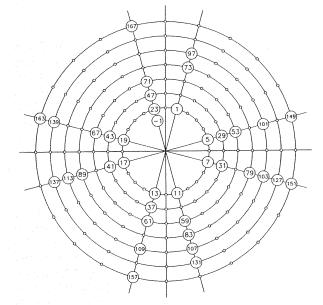
Ergibt diese die Division bei allen "n" ausschließlich den ganzzahligen Quotienten mit dem Wert 1 und keinen höheren ganzzahligen Quotienten, ist es eine Primzahl, in allen anderen Fällen ist es keine Primzahl.

Da die Zahl 55 ganzzahlig durch 11, 5 und 1 teilbar ist, kann es keine Primzahl sein, während die 61 ausschließlich durch sich selbst teilbar ist und demzufolge eine Primzahl sein muss.

Mit diesen Ausführungen soll gezeigt werden, dass eine neue Sichtweise das Verständnis zur Ordnung der Primzahlen deutlich erweitert und es möglich ist, auf diese Weise unendliche Primzahlen zu finden.

Mit diesen Erkenntnissen ist bei weitem noch nicht Schluss, denn in dieser sechsgeteilten Spirale sind Prinzipien des Dezimalsystems verborgen. Diesbezüglich gibt es eine Parallele zu den von Dr. Peter Plichta entdeckten Zusammenhängen in einem durch zwölf Achsen (= 24 Strahlen) geteilten Systemvon Kreisen. Bei seinem System werden beginnend im inneren Kreis die Zahlen von 1-24 im rechten Uhrzeigersinn eingetragen, so dass die Zahl 24 auf der senkrechten Achse oben den Abschluss bildet. In den nach außen sich entwickelnden Kreisen werden die Zahlen fortlaufend eingetragen, so dass sich auf der senkrechten Achse nach oben Vielfache von 24 befinden. Auf den kreuzartig angeordneten Achsen befinden sich hierbei sämtliche Primzahlen und ihre Produkte.

Abbildung 5: Das Primzahlkreuz von Dr. Peter Plichta²



In seinem Buch zeigt er auf, dass die Summe der ersten 10 ungeraden Zahlen, welche sich auf dem ersten Kreis befinden, exakt 100 beträgt:

$$1+3+5+7+9+11+13+15+17+19=100$$

Die Summe der ungeraden Zahlen auf dem zweiten Kreis führt zu 300, dem 3. zu 500 und schließlich auf dem 10. Kreis 1.900. Das heißt, in dieser Entwicklung ist das 100-fache der erstgenannten 10 ungeraden Zahlen als Teilsumme zu finden, deren Gesamtbetrag zu 10.000 führt!

Damit bewies Plichta, dass sich in diesem System auf verborgene Weise das Dezimalsystem ausbreitet.

Überraschend ist, dass sich in der sechsgeteilten Spirale gleichfalls die Ausbreitung des Dezimal-

systems nachweisen lässt und sogar darüber hinaus noch weitere Überraschungen parat hält! Dabei ist jedoch zu berücksichtigen, dass bei dem Übergang von einem Spiralsegment zum nächsten keine deutliche Trennung erfolgt, wie bei den Kreisen. Das Besondere ist, dass das erste Spiralsegment bei der Zahl 6 endet, das nächste aber mit der gleichen Zahl beginnt. Schließlich wurde erkannt, dass stets an diesen Stellen die vorhandene Zahl hälftig zum vorhergehenden und hälftig zum nachfolgenden Spiralsegment gerechnet werden muss.

Tabellarisch dargestellt ergeben sich auf den Spiralensegmenten folgende Teilsummen:

Tabelle 6: Die Ausbretung des Dezimalsystems in der sechsgeteilten Spirale

								Summe	Summe:
									18
1. Segment	0	1	2	3	4	5	6/2	18	1
2. Segment	6/2	7	8	9	10	11	12/2	54	3
3. Segment	12/2	13	14	15	16	17	18/2	90	5
4. Segment	18/2	19	20	21	22	23	24/2	126	7
	•••							•••	
10. Segment	54/2	55	56	57	58	59	60/2	342	19
Summe								1.800	100

In diesem System ist auf den ersten Blick nicht gleich erkennbar, dass hier die gleichen Prinzipien verborgen sind wie in dem Primzahlkreuz von Plichta. Erst die Division durch die Summe der Zahlen des ersten Spiralsegmentes offenbart die gleiche Folge der ungeraden Zahlen, die im weiteren Fortgang die Prinzipien des Dezimalsystems enthüllen.

Bei weiteren Untersuchungen wurde festgestellt, dass dieser Effekt bei einer x-beliebigen Anzahl

² Dr. Peter Plichta: "Gottes geheime Formel"; Seite 170

von Achsen gleichfalls eintritt. Daraus lässt sich ableiten, dass zumindest mathematisch betrachtet, das Dezimalsystem eine absolute Vorrangstellung einnimmt.

Da die oben gezeigte Spirale drei Zahlenmengen enthält, lohnt es sich eine analoge Betrachtung für jede einzelne Zahlenmenge anzustellen. Erstaunlich ist, dass der gleiche Effekt der dezimalen Ausbreitung auch für jede einzelne Zahlenmenge festzustellen ist.

Logisch ist, dass die Zahlenmengen der "1" und der "2" nach einem Spiralumlauf weder den Anfang noch das Ende des Umlaufs markieren, sondern sich innerhalb dieses Umlaufs befinden. Folglich gehen alle Zahlen auf diesen Achsen mit ihrem vollen Betrag in die Rechnung ein.

Wie bereits erklärt werden bei der Zahlenmenge der "3" alle Zahlen hälftig angerechnet, die sich an dem Übergang von Spiralsegment zu Spiralsegment befinden. Das führt nachfolgend zu einem Effekt, indem die Ziffer 6 deutlich in Erscheinung tritt.

Summenwerte bei einem Spiralumlauf:

- ,1": 1+5 = 6
- ,2": 2+4 = 6
- ,3": $3+\frac{6}{2} = 6$

Summenwerte bei 10 Spiralumläufen:

- ..1": 1+5+7+11+13+17+19+23+25+29+31+35+37+41+43+47+49+53+55+59 = 600
- $\mathbf{2}$: 2+4+8+10+14+16+20+22+26+28+32+34+38+40+44+46+50+52+56+58 = 600
- ,3": $3+6+9+12+15+18+21+24+27+30+33+36+39+42+45+48+51+54+57+\frac{60}{2} = 600$

Im weiteren Fortschritt führen sie bei den drei Zahlenmengen zu folgenden Teilergebnissen:

	<u>"1" </u>	,,2"	<u>"3"</u>	
 Bei einem Spiralumlauf 	6	6	6!	
 bei 10 Spiralumläufen zu 	6 00	6 00	6 00	
 bei 100 Spiralumläufen zu 	6 0.000	6 0.000	6 0.000	
• bei 1.000 Spiralumläufen zu	6 .000.000	6 .000.000	6 .000.000	u.s.w.

Was wir hier sehen ist, dass dreimal die 6 in Erscheinung tritt und damit eine Verbindung zu der "ominösen" Zahl 666 hergestellt werden kann, die in der Literatur mit dem Luziferischen verbunden wird. Jetzt erkennen wir aber, dass diese abgeleitete Ziffernfolge 6-6-6 einen nicht zu erwartenden Hintergrund besitzt. In meinem Buch "Die Ordnung der Schöpfung" bin ich auf diese Thematik im Detail eingegangen, die man nur versteht, wenn man einen Urknall und die davor entstandene Schöpfung akzeptiert und begreift, die mit dem Entstehen eines ersten energetischen Zwillings-Zellenpaares ihren Anfang genommen hat. Mit diesem Zwilling lässt sich nachfolgend auch erklären, warum Symbolismen einen doppelten Charakter haben und folglich das Prinzip 6-6-6 sowohl im positiven wie auch im negativen Sinn seine Ausprägung findet. Der Umfang dieser Erkenntnisse macht es hier unmöglich, im Detail darauf einzugehen, so dass ich auf das erwähnte Buch verweisen möchte.

Bereits vor einigen Jahren hatte der Autor die Idee, dass es möglich sein müsste, dieses System der sechsgeteilten Spirale in das Dreidimensionale zu transformieren. Der Gedanke entstand aus dem Vorhandensein der drei verschiedenen Zahlenmengen, die in ihrer separierten Form eigene Spiralgebilde entwickeln können. Dazu musste jeder Zahlenmenge eine eigene mathematische Funktion zugeordnet werden, die eine dreidimensionale Verknüpfung ermöglichen sollten. Es gelang schließlich ein homogenes System zu finden, in dem sich in einem dreidimensionalen Koordinatensystem die Spiralen an den Schnittpunkten der Achsen kreuzten. Um die daraus entstehende Form plastisch darzustellen, wurde auf der Basis eines Modells ein größeres Objekt angefertigt, welches als "Kunstobjekt" realisiert wurde.

Abbildung 6: das dreidimensionale Spiralensystem

In diesem System befindet sich an den Kreuzungspunkten der horizontalen Ebene symbolhaft die Spiralfunktion, die aus den Primzahlen und ihrer Produkte untereinander abgeleitet wurde. Folglich entstanden die beiden im rechten Winkel zueinanderstehenden senkrechten Spiralen aus den beiden abgeleiteten Funktionen der anderen Zahlenmengen.

Bei dem fertigen dreidimensionalen Modell wurde überraschend festgestellt, dass es eine starke energetische Wirkung besitzt! Nähert man sich mit geöffneten Handflächen in Richtung zu diesem Spiralsystem, verspürt man wie ein feiner energetischer Strom in den Körper fließt, der je nach individuellen Voraussetzungen unterschiedlich stark wahrgenommen wird. Offensichtlich zieht dieses Spiralsystem über seinen Mittelpunkt aus der Umgebung "Raumenergie" an und strahlt es

kugelförmig wieder ab. Diese Wirkung ist gleichfalls nur erklärbar, wenn man die Prinzipien einer Urschöpfung vor dem Urknall erkennt und nachvollziehen kann. Nicht unerwähnt soll bleiben, dass in diesem Modell die Grundlagen einer dritten Schwingungsdimension zu finden sind. Kosmisch betrachtet ist es nicht entscheidend, eine Dimension nur nach toten Linien und der Zeit zu beurteilen, denn "tote geometrische" Linien erzeugen noch kein Leben. Vielmehr ist es wichtig danach zu suchen, wie Schwingungen entstanden sind, denn im Kosmos gibt es nichts, was nicht schwingt. Die Zeit ist und bleibt eine Eigenschaft und ist niemals eine eigenständige Dimension, auch wenn sie in der offiziellen Wissenschaft als eine Dimension betrachtet wird. Leider wird der Begriff "Dimension" in vielfältiger Weise benutzt, so dass es nicht immer leicht ist zu unterscheiden, wovon die Rede ist. Aus diesem Grunde wird in dem oben genannten Buch der Begriff "Schwingungsdimension" eingeführt, der auf einem mit Schwingungen überlagerten Achsensystem beruht. Dadurch ist es möglich höhere Schwingungsdimensionen erstmals zu verstehen und sogar in grafischer Darstellung bildhaft zum Ausdruck zu bringen. In einem nachfolgenden Artikel soll auf diese Thematik eingegangen werden um zu zeigen, dass höhere Schwingungsdimensionen auch höhere Lebensformen ermöglichen, die sich aktuell unseren Augen entziehen. Damit wird ein entscheidender Ansatz dafür geliefert, dass es einen Schöpfergott gibt und wie er zu verstehen ist.

Hinweise und Kritiken zu diesem Artikel können an den Autor gerichtet werden über die Internetseite www.hores.org.

Axel Klitzke