Die Primzahlverteilung - das Rätsel ist gelöst

Seit Menschengedenken beschäftigen sich an der Mathematik interessierte Menschen mit Fragen, deren Hintergrund rätselhaft erscheint. Eines dieser Rätsel betrifft die Primzahlen, deren Verteilung in der Menge aller ganzen Zahlen bisher nicht gelöst werden konnte. Mit Vehemenz widersteht die Lösung allen Bemühen der Forscher, selbst der Einsatz der Computertechnik brachte die Forscher keinen entscheidenden Schritt voran.

In der vordergründigen Konzentration eine Lösung zu finden, welche möglicherweise sichtbar und nachvollziehbar die Verteilung der Primzahlen aufzeigt, scheint das Problem des "Widerstandes" zu sein, den wahren Hintergrund der Verteilung zu erkennen. Es ist deshalb naheliegend, dass die bisherige Denkweise nicht förderlich war, den entscheidenden Schritt zur Lösung des Problems näher zukommen.

Bei der nachfolgend aufgezeigten Theorie wird von einer durch drei Achsen geteilten Spirale ausgegangen, deren Schnittpunkte mit der Spirale eine mathematische Besonderheit aufweist, wenn man die Schnittpunkte fortlaufend vom Zentrum mit Null beginnend nummeriert.

Durch diese Anordnung sind auf den Achsenabschnitten 0-A und 0-E sämtliche Primzahlen und die Produkte von Primzahlen zu finden. Die Lösung des oben genannten Problems liegt folglich darin, die Produkte von Primzahlen aus der Menge der Primzahlen zu eliminieren.

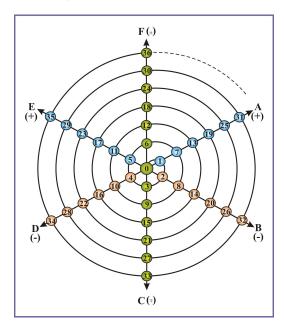


Abbildung 1: die sechsgeteilte Spirale

Unabhängig hiervon besitzt diese Konstruktion noch einige Besonderheiten. Dazu gehört, dass sich auf der senkrechten Achse C-F sämtliche durch drei teilbare Zahlen befinden während auf den Achsabschnitten 0-B und 0-D alle durch zwei und nicht gleichzeitig durch drei befindliche Zahlen zu finden sind. D.h., dass aus dieser Spiralkonstruktion drei Zahlenmengen abzuleiten sind, von denen die erste die herausragende Bedeutung zur Lösung der Primzahlverteilung darstellt.

Betrachten wir nun die mathematischen Bedingungen auf den einzelnen Achsabschnitten, die sich durch folgende Formeln darstellen lassen:

 $0-A: 6 \times n+1$

0-E: $6 \times n-1$

Abbildung 2a und 2b: die Folge der Zahlen auf den Achsabschnitte 0-E und 0-A

n	1	2	3	4	5	6	 123	124	125	
6xn-1	5	11	17	23	29	35	 737	743	749	

und

n	1	2	3	4	5	6	 123	124	125	
6xn+1	7	13	19	25	31	37	 739	745	751	

Es ist offensichtlich, dass sich in beiden Zahlenreihen zwangsweise Produkte von Primzahlen ergeben müssen, wie zum Beispiel $5 \times 5 = 25$ oder $5 \times 7 = 35$.

Werden beide Zahlenreihen miteinander verschmolzen (wie in Abbildung drei gezeigt),ergibt sich eine neue Zahlenreihe, welche die Grundlage bildet sämtliche Produkte von Primzahlen aus der Menge der Primzahlen zu eliminieren.

Abbildung 3: die geordnete Menge aller Zahlen auf den Achsabschnitte 0-A und 0-E

	5	7	11	13	17	19	23	25	29	31	35	37		745	749	751	
- 1	•									• •		•	l				1

Wie aus Abbildung 1 erkennbar ist, enthält diese Folge die wechselseitige Entwicklung der Zahlen auf den genannten Achsabschnitten.

Um die Produkte von Primzahlen aus der Menge der Primzahlen zu eliminieren, ist es folglich nur notwendig, die in Abbildung 3 gezeigte Folge in einer Kreuztabelle untereinander zu multiplizieren und die sich ergebenden Zahlen aus der Menge der Primzahlen zu entfernen. Aus Gründen der inneren Logik entwickeln sich in dieser Kreuztabelle beiderseitig der mittleren, schrägen Achse die Teilergebnisse spiegelbildlich.

Abbildung 4: Kreuztabelle aller Produkte von Primzahlen

	5	7	11	13	17	19	23	25	29	31	35	37		745	749	751	
5	25	35	55	65	85	95	115	125	145	155	175	185		3725	3745	3755	
7	35	49	77	91	119	133	161	175	203	217	245	259		5215	5243	5257	
11	55	77	121	143	187	209	253	275	319	341	385	407		8195	8239	8261	
13	65	91	143	169	221	247	299	325	377	403	455	481		9685	9737	9763	
17	85	119	187	221	289	323	391	425	493	527	595	629		12665	12733	12767	
19	95	133	209	247	323	361	437	475	551	589	665	703		14155	14231	14269	
23	115	161	253	299	391	437	529	575	667	713	805	851		17135	17227	17273	
25	125	175	275	325	425	475	575	625	725	775	875	925		18625	18725	18775	
29	145	203	319	377	493	551	667	725	841	899	1015	1073		21605	21721	21779	
31	155	217	341	403	527	589	713	775	899	961	1085	1147	:	23095	23219	23281	
35	175	245	385	455	595	665	805	875	1015	1085	1225	1295		26075	26215	26285	
37	185	259	407	481	629	703	851	925	1073	1147	1295	1369		27565	27713	27787	
745	3725	5215	8195	9685	12665	14155	17135	18625	21605	23095	26075	27565		555025	558005	559495	
749	3745	5243	8239	9737	12733	14231	17227	18725	21721	23219	26215	27713		558005	561001	562499	
751	3755	5257	8261	9763	12767	14269	17273	18775	21779	23281	26285	27787		559495	562499	564001	

Die Schlussfolgerung aus diesen vorgestellten Erkenntnissen lautet demzufolge, dass nicht die Verteilung der Primzahlen selbst das Entscheidende ist, um deren innere Ordnung zu erkennen, sondern die Verteilung der Produkte von Primzahlen, die aus der Menge der Primzahlen eliminiert werden müssen!

Desweiteren zeigen diese Erkenntnisse, dass es möglich ist, jede Zahl daraufhin zu überprüfen, ob sie eine Primzahl ist oder nicht.

Bei dieser Überprüfung schließen sich von vornherein jene Zahlen aus, die durch zwei oder drei teilbar sind, da sie ableitend aus den bekannten Regeln der Mathematik niemals Primzahlen sein können

Das Verfahren hierzu ist recht einfach. Eine vorgegebene Zahl X wird in zwei Durchläufen durch jene Werte dividiert, die sich aus den Formeln für $6 \times n-1$ und $6 \times n+1$ (für $n \le X/6$) ergeben.

Ergibt diese die Division bei allen "n" eine irrationale Zahl, ist es Primzahl, ergibt sich irgendwann ein ganzheitlicher Wert, ist es keine Primzahl.

Mit diesen Ausführungen soll gezeigt werden, dass eine neue Sichtweise das Verständnis zur Verteilung der Primzahlen deutlich erweitert und es möglich ist, auf diese Weise unendliche Primzahlen zu finden.

Axel Klitzke